On 10 December, Germany’s new Wendelstein 7-X stellarator was fired up for the first time, rounding off a construction effort that took nearly 2 decades and cost €1 billion. Initially and for the first couple of months, the reactor will be filled with helium—an unreactive gas—so that operators can make sure that they can control and heat the gas effectively. At the end of January, experiments will begin with hydrogen in an effort to show that fusing hydrogen isotopes can be a viable source of clean and virtually limitless energy. Here's a feature we ran on the machine earlier this year:
If you’ve heard of fusion energy, you’ve probably heard of tokamaks. These doughnut-shaped devices are meant to cage ionized gases called plasmas in magnetic fields while heating them to the outlandish temperatures needed for hydrogen nuclei to fuse. Tokamaks are the workhorses of fusion—solid, symmetrical, and relatively straightforward to engineer—but progress with them has been plodding.
Now, tokamaks’ rebellious cousin is stepping out of the shadows. In a gleaming research lab in Germany’s northeastern corner, researchers are preparing to switch on a fusion device called a stellarator, the largest ever built. The €1 billion machine, known as Wendelstein 7-X (W7-X), appears now as a 16-meter-wide ring of gleaming metal bristling with devices of all shapes and sizes, innumerable cables trailing off to unknown destinations, and technicians tinkering with it here and there. It looks a bit like Han Solo’s Millennium Falcon, towed in for repairs after a run-in with the Imperial fleet. Inside are 50 6-tonne magnet coils, strangely twisted as if trampled by an angry giant.
No comments:
Post a Comment